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The subject of this study is a steady two-dimensional incompressible flow past a
rapidly rotating cylinder with suction. The rotation velocity is assumed to be large
enough compared with the cross-flow velocity at infinity to ensure that there is no
separation. High-Reynolds-number asymptotic analysis of incompressible Navier–
Stokes equations is performed. Prandtl’s classical approach of subdividing the flow
field into two regions, the outer inviscid region and the boundary layer, was used
earlier by Glauert (1957) for analysis of a similar flow without suction. Glauert found
that the periodicity of the boundary layer allows the velocity circulation around the
cylinder to be found uniquely. In the present study it is shown that the periodicity
condition does not give a unique solution for suction velocity much greater than 1/Re.
It is found that these non-unique solutions correspond to different exponentially small
upstream vorticity levels, which cannot be distinguished from zero when considering
terms of only a few powers in a large Reynolds number asymptotic expansion. Unique
solutions are constructed for suction of order unity, 1/Re, and 1/

√
Re. In the last

case an explicit analysis of the distribution of exponentially small vorticity outside
the boundary layer was carried out.

1. Introduction
The problem of determining the velocity circulation around the closed boundary

of a solid body in a two-dimensional fluid flow has been a focus of attention in
fluid dynamics for almost a century. It is known that the Euler equations governing
inviscid flow behaviour admit a family of solutions with circulation being an arbitrary
parameter. For modelling non-separated flow around a body with a sharp trailing
edge, say an airfoil, one may use the Kutta–Joukowskii condition for determining the
unique magnitude of the circulation. This condition has in fact a viscous nature and
eliminates the singular pressure gradient leading to separation from the sharp edge.
However, it cannot be used for smooth bodies.

A simple example of non-separated flow past a smooth bluff body is the flow past
a rapidly rotating circular cylinder. This flow was studied experimentally by Prandtl
(see for example Prandtl & Tietjens 1936). When the cylinder rotation is not fast
enough, a large separation region is observed in the cylinder wake. However, this
region shrinks and ultimately disappears when the cylinder wall velocity exceeds a
certain value, being about twice the free-stream velocity.

The attached flow may be described by the well-known potential solution of the
Euler equations with circulation depending upon the speed of the cylinder rotation.
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This circulation cannot be determined using the Euler equations only. Glauert (1957)
was the first to calculate the circulation around the rotating cylinder. He used for
this purpose Prandtl’s equation for the boundary layer developing along the cylinder
surface. By that time it had become clear (see Batchelor 1956; Squire 1956; Wood
1957) that a boundary layer with closed streamlines, like the one on the cylinder
surface, does not always have a solution which is periodic in the circumferential
direction. For the existence of the periodic solution an additional condition should
be imposed on the external pressure distribution. Glauert (1957) demonstrated that
this additional condition allows the circulation to be found as a function of the
cylinder rotation speed. In his analysis Glauert used an asymptotic theory based on
the assumption that the free-stream velocity is small compared with the velocity of
the cylinder surface. As a result an explicit formula for the circulation was derived.

Later Nikolaev (1982) extended the theory to include the nonlinear effects in the
boundary layer observed when the free-stream velocity becomes finite compared to
the velocity of the cylinder surface. By means of numerical solution of the boundary
layer equations subject to the periodicity condition he was able to study different flow
regimes including those close to separation. In the present paper the influence of a
suction through the cylinder surface upon the behaviour of the solution is studied.

It will be shown that even for very weak suction the condition of periodicity in the
boundary layer is not sufficient to yield a unique solution.

This type of flow behaviour is well known. For example, in the case of zero free-
stream velocity and uniform suction the flow about a rotating cylinder is axisymmetric
and an exact solution of the full Navier–Stokes equations is easily found (Rosenhead
1963). Written for the vorticity it has the form

ω = A

(
r0

r

)R
,

where R = −r0Vw/ν is the Reynolds number based on the suction velocity, r0 is the
cylinder radius, Vw < 0 is the suction velocity on the cylinder surface, and A is the
value of ω at the cylinder. If integrated in terms of the circumferential fluid velocity
vθ using

ω =
1

r

∂

∂r
(rvθ)

this solution gives

vθ =
Γ1

2πr
+ A

(
r0

r

)R−1

(R 6= 2).

It follows that if R < 1 then the only solution with zero velocity at infinity is
vθ = Γ1/(2πr), A = 0 with Γ1 uniquely determined from the no-slip condition at the
cylinder, but if R > 1 then there is a one-parameter family of solutions with A as an
arbitrary parameter. Egorov (1986) solved the corresponding unsteady problem and
showed that A is determined by the initial conditions.

This result cannot be directly applied in the case of a small non-zero cross-flow
velocity, because this limit is non-uniform. The reason is that the velocities caused by
the suction and cylinder rotation tend to zero at infinity, and, hence, at sufficiently
large distance from the cylinder they will be of the same order of magnitude as the
cross-flow velocity, however small the latter is.

Our study in this paper is based on asymptotic analysis of the Navier–Stokes
equations at large values of the Reynolds number. Section 2 is devoted to formulation
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of the problem and discussion of some properties of the expected solution. In § 3
strong suction is considered and it is shown that Glauert’s approach gives non-unique
solutions while the use of a certain invariant condition described in § 2 allows some
of them to be excluded, or even unique solutions to be found for certain distributions
of wall velocity. In § 4 the solution is constructed for suction velocity of order 1/

√
Re

with results similar to those of § 3, namely to determine the unique solution the
invariant condition had to be used. In § 5 the case of suction of order 1/Re is
analysed, a unique solution is obtained without use of the invariant condition, and
the nature of the non-uniqueness of asymptotic solutions is revealed and discussed.
This makes it possible to return to the case of suction of order 1/

√
Re in § 6, where an

analysis of the exponentially small vorticity outside the boundary layer is performed,
which allowed the unique asymptotics in this case to be found and clarified further
the nature of the observed behaviour of the asymptotic expansion.

2. Problem formulation and some properties of the solution
The following boundary-value problem for the steady Navier-Stokes equations will

be considered:

u · ∇u = −∇p+
1

Re
∇2u,

∇ · u = 0,

u|S = uw, u||x|→∞ = u∞,

 (2.1)

where S is the cylinder surface. The velocity uw at the wall has two components: the
tangential velocity uw and the normal velocity, or suction velocity, vw . In most cases
we will assume that uw and vw are constants. The velocity u∞ at infinity has only
one non-zero component u∞, which will be assumed constant throughout the paper
except in § 5 where suction velocity of order 1/Re is considered. In that section we
will also consider the case of a shear flow at infinity, with a non-zero vorticity Ω∞. In
this case u∞ = −Ω∞y, where y is the Cartesian coordinate directed perpendicular to
u∞. All the quantities are suitably non-dimensionalized so that the rotation velocity
of the cylinder surface is of order unity.

For any closed contour we can introduce the velocity circulation Γ . If the solution
of (2.1) is unique then Γ may be considered as a function of uw . When the high-
Reynolds-number asymptotics is considered, far from the body the flow is potential,
and Γ does not depend on the particular contour enclosing the body. In that case
it may be convenient to prescribe Γ and seek the rotation velocity uw which ensures
this value of Γ .

There are two properties of the solution of (2.1) which play an important role in
the subsequent analysis. They can be described in terms of the vorticity flux density

R = uω − 1

Re
∇ω,

where uω and ∇ω/Re are vorticity fluxes due to convection and diffusion respectively.
The Helmholtz equation for vorticity, which can be derived by taking curl of (2.1),
has the form ∇ · R = 0. Using the continuity equation it can also be written as

u · ∇ω =
1

Re
∇2ω. (2.2)
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The vorticity flux through a curvilinear arc AE is defined as

F =

∫ E

A

R · n ds, (2.3)

where n is a unit vector directed along the left normal to the integration arc. Golubkin
& Sizykh (1987) showed that R is directed along lines u2/2+p = const. It can be easily
shown that the vorticity flux is equal to the difference between the total pressures at
the arc ends (Chernyshenko 1998):∫ E

A

R · n ds = H(E)−H(A), H = u2/2 + p. (2.4)

Indeed,

∂H

∂x
= u

∂u

∂x
+ v

∂v

∂x
+
∂p

∂x
.

Taking into account that

∂v

∂x
= ω +

∂u

∂y

and using the x-component of the momentum equation from (2.1) we obtain

∂H

∂x
= vω − 1

Re

∂ω

∂y
= Ry.

Here, the identity

∇2u = −∂ω
∂y

following from the continuity equation was used. Similarly

∂H

∂y
= −uω +

1

Re

∂ω

∂x
= −Rx.

Substituting these expressions for (Rx, Ry) = R in (2.3) immediately proves that
formula (2.4) is valid.

From this formula it follows that the vorticity flux though any closed contour
equals zero. This condition is invariant in the sense that it is valid for arbitrary
Reynolds number. Therefore, it must also hold for asymptotic solutions as Re → ∞.
This provides additional information on the asymptotic solutions, which may be used
to determine them uniquely as Batchelor (1956) did when the well-known Prandtl–
Batchelor theorem was proved.

Provided that u∞ = const 6= 0 it is possible to derive another invariant condition
valid for arbitrary Reynolds number, namely that on any contour enclosing the
body the vorticity necessarily changes its sign, that is it cannot be only positive or
only negative on the contour. This can be explained in the following way. Let us
assume that on a certain contour enclosing the body the vorticity is positive. Since
u∞ = const, the vorticity at infinity is zero. Since vorticity is governed by the Helmholtz
equation, from the maximum principle (Courant 1962) it follows that the vorticity is
positive everywhere outside the contour. Hence, it is also positive on a straight line
perpendicular to u∞, which we choose to be so far downstream that on this line u
is quite close to u∞ and, hence, is everywhere almost perpendicular to the line. It is
now fairly obvious that the vorticity flux through this line is not zero. This can be
demonstrated using the linearized Helmholtz equation with u ≈ u∞ = const which can



The uniqueness of the flow past a rotating cylinder with suction 217

Figure 1. General flow topology.

be solved in quadratures. The rigorous mathematical proof for non-constant u was
given by S. B. Kuksin (1997, personal communication). By the theorem formulated
above this non-zero flux through the line is equal to the difference between the total
pressure at infinity at each end of the line, which contradicts the condition u∞ = const.

Note that this result (that vorticity necessarily changes sign on the contour enclosing
the body) cannot be proved for contours not enclosing the body since in that case
the maximum principle cannot be used, it cannot be proved for the case of a shear
flow at infinity since in that case the difference between total pressures is infinite and
there is no contradiction, and it cannot also be proved when u∞ = 0 since in that case
we cannot choose a line on which the velocity vector is everywhere directed from one
side of the line to the other.

The condition of vorticity necessarily changing sign on a contour enclosing the
body and the condition of zero vorticity flux through a closed contour will be used
in the subsequent sections.

3. Strong suction
Let the suction velocity Vw be of order unity as Re → ∞. Further let Vw be large

enough so that there are no closed streamlines. Then outside the boundary layer
the flow will be potential, with no closed streamlines. This flow depends on one
parameter, namely circulation Γ . The flow pattern is shown in figure 1.

It is easy to verify that the characteristic thickness of the boundary layer in that
case is 1/Re and the governing equations in the boundary layer are

V
∂U

∂Y
=
∂2U

∂Y 2
,

∂V

∂Y
= 0, (3.1a, b)

where U and V are the tangential and normal velocity components respectively, and
Re−1Y is the coordinate normal to the wall. For a given distribution of suction
velocity, V = Vw(X) < const < 0 at Y = 0, from (3.1b) it follows that V = Vw(X)
everywhere inside the boundary layer.

To solve (3.1a) we, first, need to specify the wall velocity U = Uw(X) at Y = 0.
The second boundary condition follows from matching with the inviscid flow region
outside the boundary layer:

U = Ue(X) at Y = ∞.
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Generally, Ue(X) depends on the distribution of the suction velocity Vw(X) and the
circulation Γ . The solution satisfying these conditions is

U = Ue(X) + (Uw(X)−Ue(X)) exp (Vw(X)Y ).

The vorticity in the boundary layer is

ω = −Re
∂U

∂Y
= Re (Ue(X)−Uw(X))Vw(X) exp (Vw(X)Y ).

In particular, on the wall

ωw = Re (Ue(X)−Uw(X))Vw(X). (3.2)

Higher-order terms can be constructed quite easily. The solution obtained is not
unique as it depends on the arbitrary parameter Γ which is not known a priori.
It is interesting to note that the method of matched asymptotic expansions, in
its straightforward form used here to construct the solution, fails to detect any
inconsistency whatever value of circulation Γ is taken. Meanwhile it is easily seen
that at least solutions with very large Γ , for which |Ue(X)| > |Uw(X)|, are not correct
because for these solutions the vorticity on the wall does not change sign.

For certain distributions of wall velocity the invariant condition of vorticity being
not strictly positive or strictly negative on a closed contour determines the circulation
uniquely. Let Uw(X) = Ue0(X) + W , W = const, where Ue0(X) is equal to Ue(X)
for Γ = 0. For the case of Vw = const an explicit expression for Ue(X) is given
in the next section. Since Ue(X) = Ue0(X) + Γ/2πr0, (3.2) takes the form ωw =
Re(Γ/2πr0 −W )Vw(X). Therefore, the invariant condition is satisfied only provided
that Γ = 2πr0W .

Although in the general case of arbitrary Uw(X) the invariant condition does
not give Γ , the result obtained indicates the possibility that the true asymptotic
solution is always unique, but that the usual asymptotic technique is not sufficient for
determining this solution. For suction of order less than unity this is demonstrated in
the following sections. It is also shown that this unusual situation is associated with
exponentially small terms in the asymptotic expansions.

4. Boundary layer with suction of order 1/
√
Re

Consider a rotating circular cylinder of unit radius in a uniform flow with the
free-stream velocity u∞. Let Uw be the circumferential velocity of the cylinder surface
and Vw the suction velocity assumed to be constant over the cylinder surface. Let Vw
be a quantity of order 1/

√
Re, that is Vw = −a/√Re, where a = O(1) and a > 0.

Introduce a curvilinear coordinate system with X measured along the cylinder surface
and scaled coordinate Y = Re1/2(r− 1) in the normal direction, as shown in figure 2.
The equation for the stream function Ψ in the boundary layer takes the form

∂Ψ

∂Y

∂2Ψ

∂X∂Y
− ∂Ψ

∂X

∂2Ψ

∂Y 2
=
∂3Ψ

∂Y 3
+Ue

dUe

dX
,

where Ue is the velocity at the outer edge of the boundary layer.
The flow outside the boundary layer is inviscid to the leading order. Since the

suction is small, it does not influence the leading-order inviscid solution which is
known to depend on the circulation Γ . When Γ is large enough then a region with
closed streamlines is formed around the cylinder. The vorticity along streamlines is
constant and must be zero, since otherwise there would be a closed contour on which
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Y

X

r

U∞

1

C = 2p

h

Figure 2. Coordinate system for a rotating cylinder.

the vorticity does not change sign. Therefore, the flow outside the boundary layer is
potential.

It is convenient to prescribe the circulation in the outer flow and consider the
wall velocity as an unknown parameter. Let us set Γ = 2π which effectively means

that the velocity components are made non-dimensional by reference to Γ̂ /r0 where

Γ̂ is dimensional circulation and r0 is cylinder radius. All the coordinates are made
non-dimensional with r0.

Then, in the inviscid flow outside the boundary layer the stream function ψ takes
the form

ψ = u∞
(
r − 1

r

)
cos θ + log r,

hence

Ue =
∂ψ

∂r

∣∣∣
r=1

= 1 + 2u∞ cosX,

and

Ue

dUe

dX
= −2u∞ sinX − 2u2

∞ sin 2X.

Thus, the problem for the boundary layer takes the form

∂Ψ

∂Y

∂2Ψ

∂X∂Y
− ∂Ψ

∂X

∂2Ψ

∂Y 2
=
∂3Ψ

∂Y 3
− 2u∞ sinX − 2u2

∞ sin 2X

with the boundary conditions being

∂Ψ

∂Y

∣∣∣
Y=0

= Uw,
∂Ψ

∂X

∣∣∣
Y=0

= a,
∂Ψ

∂Y

∣∣∣
Y→∞

= Ue.

In addition, the periodicity condition for the velocity components

∂Ψ

∂X

∣∣∣
X+2π

=
∂Ψ

∂X

∣∣∣
X
,

∂Ψ

∂Y

∣∣∣
X+2π

=
∂Ψ

∂Y

∣∣∣
X

must hold.
To the authors’ knowledge, there are no rigorous mathematical results concerning

the uniqueness and existence of the solution of this problem. However, on the basis of
some relevant results mentioned earlier, it can be expected that for a = 0 this problem
has no solution for arbitrary Uw and Ue (hence, for arbitrary Γ ). Then, the solvability
condition can be used for determining Uw for a given Γ or vice versa. For a > 0 this
problem has a solution for any Γ and Uw , at least within a certain Γ range when
there is no separation. Hence, without the use of some invariant condition or more
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subtle analysis, the straightforward asymptotic solution is not unique. We illustrate
this in the rest of this section for the case of small free-stream velocity.

Following Glauert (1957) let us assume that the free-stream velocity u∞ is small
and represent the solution of this problem as

Ψ = Ψ0 + u∞Ψ1 + u2
∞Ψ2 + · · · .

In this formulation the circumferential velocity of the cylinder surface Uw should be
found as a part of the solution. We will seek it in the form

Uw = Uw0 + u∞Uw1 + u2
∞Uw2 + · · · .

In the case of zero suction considered by Glauert (1957) the solvability condition
for the periodic boundary layer derived by Batchelor (1956) and Squire (1956) gives
Uw0 = 1, but in our case this condition does not apply.

For the leading-order term Ψ0 in the expansion of the stream function the following
boundary-value problem holds:

∂Ψ0

∂Y

∂2Ψ0

∂X∂Y
− ∂Ψ0

∂X

∂2Ψ0

∂Y 2
=
∂3Ψ0

∂Y 3
,

∂Ψ0

∂Y

∣∣∣
Y=0

= Uw0;
∂Ψ0

∂X

∣∣∣
Y=0

= a;
∂Ψ0

∂Y

∣∣∣
Y→∞

= 1.

Its solution satisfying the periodicity condition for the velocity components has the
form

Ψ0 = Y + aX + (1−Uw0)e
−aY /a.

This solution exists for any value of Uw0 and, therefore, Uw0 cannot be determined
from a solvability condition. However, since in this solution the vorticity at the wall is
a(1−Uw0) then from the invariant condition of the vorticity on a contour not being
of a fixed sign it follows that Uw0 = 1.

The boundary-value problem for the next-order term Ψ1 proves to be

∂2Ψ1

∂X∂Y
− a∂

2Ψ1

∂Y 2
=
∂3Ψ1

∂Y 3
+ i(eiX − e−iX),

∂Ψ1

∂Y

∣∣∣
Y=0

= Uw1,
∂Ψ1

∂X

∣∣∣
Y=0

= 0,
∂Ψ1

∂Y

∣∣∣
Y→∞

= eiX + e−iX.

A periodic solution to this problem may be sought in the form

Ψ1 = f0(Y ) + f1(Y )eiX + f1(Y )e−iX,

which gives after a substitution

f′′′0 + af′′0 = 0, f′0(0) = Uw1, f0(0) = 0, f′0(∞) = 0,

f′′′1 + af′′1 − i(f′1 − 1) = 0, f′1(0) = 0, f1(0) = 0, f′1(∞) = 1,

where the overbar denotes complex conjugate quantities. It is easily deduced that

f0 =
Uw1

a
(1− e−aY ), f1 = − 1

λ1

eλ1Y + Y +
1

λ1

, (4.1)

where λ1 = (−a−√a2 + 4i)/2 and the real part of λ1 is negative. It is easily seen that
the nth term in the expansion of the stream function will contain an additive term
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of the form fn(Y )einX and its complex conjugate fn(Y )e−inX . Each function fn(Y )
satisfies the equation

f′′′n + af′′n − inf′n = Fn(Y ),

where the right-hand side is determined from the previous approximations. The
solution of this equation includes a term of the form Cne

inXeλnY where λn is the
solution of the quadratic equation

λ2
n + aλn − in = 0 (4.2)

and we have to choose the root with negative real part.
As it can be seen from (4.1), the solution exists for any Uw1. Contrary to that

Glauert’s (1957) solution with no suction determines Uw1 and all subsequent terms
in the expansion of Uw uniquely. The reason is that for a = 0 we can satisfy both
f′0(0) = Uw1 and f′0(∞) = 0 boundary conditions simultaneously only when Uw1 = 0
which leads to uniqueness of Glauert’s solution.

Glauert obtained one more term in u∞:

Uw = 1 + 3u2
∞ + · · ·

but we will limit our analysis to linear terms only.
Taking the second derivative of the solution for Ψ with respect to Y gives the

vorticity distribution in the boundary layer

ω = Re1/2 ∂
2Ψ

∂Y 2
= −Re1/2u∞(aUw1e

−aY + λ1e
iXeλ2Y + λ1e

−iXeλ1Y ) + · · · . (4.3)

It tends to zero exponentially at the outer edge of the boundary layer. As Y → ∞
in (4.3) the main term of the vorticity is −u∞Re1/2aUw1e

−aY and it does not change
sign on a contour enclosing a body apart from the case when Uw1 = 0. Hence, here
again the use of an invariant condition determines a unique solution, while the usual
technique gives a non-unique solution.

However, the invariant condition throws no light on the reasons underlying this
behaviour of the asymptotic expansion, and we still need a more profound asymptotic
analysis to be performed. For this reason we will return to the case of suction of
order Re−1/2 after analysing the case of even weaker suction, which can be considered
without the use of invariant conditions.

If we consider a ‘weak suction’ with Vw � Re−1/2, then a new region which is
wider than the conventional boundary layer should be studied. Indeed, in this case
a = −Re1/2Vw is small and (4.3) suggests the existence of a layer where r−1 = Re−1/2Y
is of order Re−1/2/a. A suitable normal variable in this layer is

Ỹ = aY = aRe1/2(r − 1).

When the suction velocity is diminished to Vw = O(Re−1) the thickness of the
new layer becomes comparable with the cylinder radius. This flow regime will be
considered in the following section.

5. The flow with a suction of order 1/Re

The flow outside the boundary layer is inviscid and in the main approximation
may be described by the equation

∆ψ = −ω(ψ),

where it is taken into account that the vorticity ω is constant along each streamline.
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Figure 3. Flow topology without suction.

To solve this problem it is necessary to determine the vorticity distribution ω =
ω(ψ). On the streamlines coming from infinity, this distribution is determined by the
boundary condition at infinity, and usually ω(ψ) = 0. In regions of closed streamlines
ω(ψ) = const according to the Prandtl–Batchelor theorem (Batchelor 1956). This
theorem cannot be directly used for the flow past a rotating cylinder with a weak
suction because in this case the streamlines are not exactly closed, but have a helical
shape.

Nevertheless, taking into account that suction is weak, one can expand the solution
in terms of 1/Re, and the leading-order approximation will represent a flow with
closed streamlines. The flow pattern for the main term is shown in figure 3. Here
again, the use of the condition that vorticity should change its sign on a closed
contour gives immediately that on these closed streamlines ω(ψ) = 0. However, in
this case an explicit asymptotic analysis, which is performed in the rest of this section,
gives substantial additional information.

As was shown above, the vorticity flux through any closed contour C must be zero:∫
C

(uω − Re−1∇ω)nds = 0. (5.1)

Choose a closed streamline of the leading-order approximation as the integration
contour C . If this streamline is situated in the inviscid region where ω = ω(ψ) then
(5.1) becomes

ω

∫
C

(u, n)ds− Re−1 dω

dψ

∫
C

(u, τ )ds = 0,

where τ is the unit vector tangent to C . It gives the following equation for the vorticity
distribution in the region under consideration:

qω − Re−1Γ (ψ)
dω

dψ
= 0.

Here, q is the fluid flux through the cylinder surface. When the suction velocity is of
order 1/Re, we can write q = Re−1Q with Q = O(1) and the equation for ω becomes

Qω − Γ (ψ)
dω

dψ
= 0, (5.2)

with circulation Γ (Ψ ) being related to vorticity ω via the Stokes theorem.
Equation (5.2) will be used in the region with closed streamlines. For the rest
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of the inviscid flow ω = 0 due to the boundary conditions at infinity. Denote the
stream function on the dividing streamline by ψ∗. The vorticity might experience a
jump across the dividing streamline leading to the formation of a thin mixing layer.
Vorticity ω in this layer is governed by the equation

∂ω

∂s
= u(s)

∂2ω

∂Ψ 2
, (5.3)

which is written in the Mises variables where Ψ = Re1/2(ψ − ψ∗), s is the distance
measured along the dividing streamline from the stagnation point, and u(s) is the
fluid velocity on the dividing streamline.

The boundary conditions for (5.3) are

ω → 0 as Ψ → +∞,
ω → Ω as Ψ → −∞.

Here Ω is the limiting value of the vorticity when the dividing streamlines is ap-
proached from the closed streamline region:

Ω = lim
ψ→ψ∗−0

ω(ψ).

To complete the formulation of the problem we note that the mixing layer passes
near the stagnation point. In a small vicinity of this point the flow is locally inviscid
(see for example Neiland & Sychev 1966), and the vorticity is constant along all
streamlines. Taking into account that part of them returns back into the mixing layer,
the following condition should hold:

ω(0, Ψ ) = ω(S̃ , Ψ )H(−Ψ ),

where S̃ is the total length of the streamline ψ = ψ∗ and H is the step function

H(z) =

{
1 if z > 0,
0 if z < 0.

Let us introduce new variables t and η:

t =
1

T

∫ s

0

u(z)dz, η =
ψ√
T
,

where

T =

∫ S̃

0

u(z)dz.

In these variables equation (5.3) becomes the heat equation and the problem for ω
takes the form

∂ω

∂t
=
∂2ω

∂η2
,

ω(0, x) = ω(1, x)H(−x),

ω → 0 as η → +∞,
ω → Ω as η → −∞.


(5.4)

From the results obtained by Chernyshenko (1995) it follows that (5.4) has a solution
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only if Ω = 0. This gives the following boundary condition for the equation (5.2):

ω(ψ∗) = 0. (5.5)

Equation (5.2) may be solved quite easily if we assume the vorticity to be small.
Then in the first approximation Γ = const = 2π. In addition, let the normal velocity
component on the cylinder surface be Vw = −Re−1α, α ∼ 1, α > 0. Then Q =
−2πα. Under this assumption the equation takes a simple form:

αω +
dω

dψ
= 0,

which gives

ω = Ce−αψ. (5.6)

Note that under this assumption of small vorticity the value of ψ∗ can be found from
the potential solution for a cylinder in the uniform flow u∞ with circulation Γ = 2π,
and it is

ψ∗ = u∞
(

1

r∗
− r∗

)
+ log r∗,

where

r∗ =
1 +

√
1− 4u2∞

2u∞
.

From the boundary condition (5.5) the factor C in (5.6) is zero as is the vorticity
throughout the entire flow field outside the boundary layer. (This is, of course, the
same result as obtained above using the invariant condition.) Thus, the circulation is
not changed in this region and its magnitude at infinity is equal to the circulation
on the outer edge of the boundary layer. It is easy to verify that suction of order
Re−1 does not manifest itself in the viscous boundary layer near the cylinder surface.
Therefore, the usual analysis applies, and the solvability condition yields a unique
circulation given by the same formula as in the case of no suction.

Let us consider now the case when the vorticity far upstream is Ω∞ 6= 0. No
invariant condition can be used in this case. For simplicity we assume Ω∞ � 1. In
that case the main term for the flow on the body scale is the same, but the boundary
condition for the mixing layer is ω → Ω∞ as x→ +∞. Accordingly, the solution in the
mixing layer exists only if Ω = Ω∞. Therefore, inside the region of closed streamlines
instead of ω = 0 we have

ω = Ω∞e−α(ψ−ψ
∗). (5.7)

The difference between the circulation along the closed contour immediately ad-
jacent to the mixing layer and that at the outer edge of the boundary layer near
the cylinder surface equals, by the Stokes theorem, the integral of ω over the closed
streamline region. For a given circulation outside the region of closed streamlines this
will lead to different values of Uw . Let us suppose now that α is large, and consider
the variation in Ω∞ which ensures a variation of order unity in Uw . From (5.7) it
follows that this variation is exponentially small with respect to α. More exactly,

∆Ω∞ ∼ α exp (−αψ∗)∆Uw = −Re Vw exp (Re Vwψ
∗)∆Uw.

Note that Vw < 0. This implies that for suction stronger than O(1/Re) asymptotic
solutions with different Uw for the same Γ will correspond to different, but exponen-
tially small with respect to Re, values of Ω∞. Here Γ on the body scale only is implied
since on larger scales the circulation depends on the contour. The high sensitivity
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A Viscous wake

Mixing layer
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Figure 4. The structure of the flow past a rapidly rotating cylinder with weak suction.

of the solution to the upstream level of vorticity has a simple physical explanation.
Consider again figure 1. Two streamlines going from upstream to the saddle point
form a pocket in which the vorticity advected by the flow is trapped. Inside the
pocket vorticity is advected everywhere toward the cylinder. However, according to
the theorem from § 2, the total vorticity flux to the body should be zero. Therefore, this
advection has to be balanced by vorticity diffusion. The advection rate is proportional
to the vorticity itself while the diffusion rate is proportional to the vorticity gradient,
divided by Re, as expressed by (5.1). This leads to the exponential behaviour of the
vorticity and, hence, to high sensitivity of the solution to the upstream vorticity level.

A standard asymptotic technique cannot distinguish exponentially small quantities,
and therefore these asymptotic solutions will look like non-unique solutions for the
case of a uniform flow at infinity. This implies also that to determine the unique
solution corresponding to Ω∞ = 0 exponentially small terms should be explicitly
taken into account. An attempt to do this is made in the following section.

6. Vorticity behaviour outside the boundary layer when suction is of
order 1/

√
Re

Let us now consider the flow with suction velocity vw ∼ 1/
√

Re, which corresponds

to a = −Vw
√

Re ∼ 1. The analysis in this section uses the fact that everywhere outside
the boundary layer the vorticity is exponentially small and does not affect the velocity
field in algebraic approximations with respect to Re. Helmholtz’s equation (2.2) in
this case becomes linear with the velocity field u given by the well-known potential
solution (slightly perturbed by the displacement effect of the boundary layer). The
circulation in the potential flow remains constant, and using suitable scaling it may
be chosen to be 2π. The streamline pattern of such a flow with a weak suction is
shown in figure 4.

For analysing the vorticity behaviour in region 1 it is convenient to use a new
coordinate system (φ, ψ), where φ and ψ are the velocity potential and stream
function. In this coordinate system equation (2.2) may be written as

∂ω

∂φ
= ε2

(
∂2ω

∂φ2
+
∂2ω

∂ψ2

)
, (6.1)
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where ε = 1/
√

Re. We will seek the solution of equation (6.1) in the form

ω = Ω0 +

∞∑
n=0

Cne
αnφeλnψ/ε, Ω0 = const.

If substituted into (6.1) this gives

ε2α2
n − αn + λ2

n = 0,

and we have

αn = λ2
n + ε2λ4

n + · · · .
Therefore

ω = Ω0 +
∑
n

Cne
λnψ/ε(eλ

2
nφ + O(ε2)). (6.2)

Note the form of asymptotic expansion (6.2). Since equation (6.1) is linear, the order
of coefficients Cn does not matter and the order of magnitude of each term at each
point depends on the magnitude of the exponent eλnψ/ε at that point. By varying the
coefficients we may make some of the terms to be of the same order of magnitude in
the vicinity of a certain curve ψ = const, but in any case these terms have different
orders of magnitude at all other points in space. In addition, all exponents may be
multiplied by some standard asymptotic expansion. We will handle only the first
terms of these expansions, which are important for our further consideration.

In region 1 (figure 4) the following periodicity condition must hold:

ω(φ, ψ) = ω(φ+ 2π, ψ + 2πaε)

which implies that λn in (6.2) should satisfy the following equation:

λ2
n + aλn = ni, (6.3)

where n is an integer.
This equation is the same as equation (4.2) derived from the boundary layer

analysis. Hence, by choosing properly coefficients Cn in (6.2) we can match solutions
for the boundary layer and region 1. The matching also suggests that the roots of
equation (6.3) should have a negative real part. Therefore

λn =
−a−√a2 + 4ni

2
, (6.4)

and for the two leading coefficients in (6.2) we have

C0 = −au∞Uw1

ε
+ O

(
u2∞
ε

)
, C1 = −λ1u∞

ε
+ O

(
u2∞
ε

)
. (6.5)

It should be noted that C−n = C̄n.
Solution (6.2) is valid in region 1. In region 2 (see figure 4) we have to take ω ≡ 0

to satisfy boundary condition ω = 0 at infinity. To match solutions in regions 1
and 2 we need to introduce a mixing layer with thickness 1/

√
Re along the dividing

streamline ψ∗, which takes its origin at critical point A (figure 4). The solution in the
mixing layer may be represented in the form

ω =
∑
n

Cne
λnψ

∗/εωn, (6.6)

where functions ωn depend on t = φ and ξ = Re1/2(ψ − ψ∗) as well as on the
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parameter ε = Re−1/2, and themselves may be expanded in powers of ε. For the
leading-order term of ωn the following equation holds:

∂ωn

∂t
=
∂2ωn

∂ξ2

with the boundary conditions being

ωn → eλ
2
nteλnξ as ξ → −∞,

ωn = o(eλnξ) as ξ → +∞.
To formulate the periodicity condition for the mixing layer one needs to consider the
locally inviscid region which occupies a small vicinity around the critical point A;
both dimensions of this region are of order 1/

√
Re in φ and ψ variables. Taking into

account that the vorticity in this region remains constant along streamlines, and that
a part of them ‘comes’ from the unperturbed free stream where ω = 0, we have

ωn(0, ξ) = ωn(2π, ξ + 2πa)H(−ξ). (6.7)

Finally, as was shown above, vorticity flux through any contour enclosing the body
must be zero. For a contour lying far enough outside the mixing layer this flux
is determined by vorticity convection into the viscous wake. According to (6.7) all
streamlines with ξ < 2πa remain inside the mixing layer, while others go into the
wake outside the critical point A, creating the vorticity flux. Since vorticity is constant
along streamlines in the turning region, this flux equals the flux upstream of the
region where streamlines turn, that is at t = 2π with 2πa < ξ < ∞. Therefore, we
have one more condition:∑

n

Cne
λnψ

∗/ε
∫ ∞

2πa

ωn(2π, ξ)dξ = 0.

To eliminate the shift 2πa in the condition (6.7), instead of variable ξ we introduce
a new variable χ = ξ − at. As a result, we obtain the following problem for functions
ωn in the mixing layer:

∂ωn

∂t
=
∂2ωn

∂χ2
+ a

∂ωn

∂χ
, (6.8)

ωn(0, χ) = ωn(2π, χ)H(−χ), (6.9)

ωn ∼ einteλnχ + · · · as χ→ −∞,
ωn → 0 as χ→ +∞, (6.10)

and the condition for zero vorticity flux now takes the form∑
n

Cne
λnψ

∗/ε
∫ ∞

0

ωn(2π, χ)dχ = 0. (6.11)

We expect that the solution of problem (6.8)–(6.10) gives

ωn − einteλnχ → An as χ→ −∞ (6.12)

where An are non-zero constants depending on the suction parameter a. Using the
standard energy arguments it is easy to demonstrate that (6.8)–(6.9) has no solution
with ωn → 0 as χ→ +∞ and ωn → const 6= 0 as χ→ −∞. For this reason Ω0 is not
independent from Cn. Instead,

Ω0 =
∑
n

Cne
λnψ

∗/εAn.
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Figure 5. Behaviour of function Fn(a).

Now, Ω0 is associated with a non-zero vorticity flux 2πaΩ0 toward the cylinder due to
vorticity convection, and, of course, the same flux taken with an opposite sign should
be convected into the wake since vorticity is conserved. It means that each function ωn
gives some non-zero contribution to the vorticity flux in the viscous wake. Indeed, let
us consider equation (6.8) taking account of (6.12). After integration of this equation
with respect to t from 0 to 2π and taking into account periodicity condition (6.9) we
obtain

ωn(2π, χ)H(χ) =
∂2

∂χ2

∫ 2π

0

ωndt+ a
∂

∂χ

∫ 2π

0

ωndt.

Now integrate this expression with respect to χ from −∞ to ∞. Using the second
boundary condition (6.10) and (6.12) we have∫ +∞

0

ωn(2π, χ)dχ = −aAn
∫ 2π

0

dt.

Thus, the flux of ωn into the viscous wake is

Fn =

∫ +∞

0

ωn(2π, χ)dχ = −2πaAn.

The dependence of Fn = 2πaAn on a, obtained from the numerical solution of (6.8)–
(6.10) for n = 0 and n = 1 is given in figure 5. As an example, in figure 6 and figure
7 functions e−λnχωn(2π, χ) are shown for n = 0 and n = 1 respectively.

Note that since the form of vorticity equation coincides with the form of the
equation for temperature in the same flow (in the case of zero Eckert number),
the results obtained here also give the solution for the temperature. In particular, the
heat flux from the cylinder is

∑
n Cne

λnψ
∗/εFn, although in this case we should take

ε = 1/
√

RePr , where Pr is the Prandtl number, and Cn should be found from the
temperature distribution on the cylinder surface.

In fact, expansion (6.6) is asymptotic, because each exponent eλnψ
∗/ε is much less

than the previous one. Coefficients Cn, n 6= 0, are of order unity with respect to the
Reynolds number and defined by matching with the boundary layer on the cylinder
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Figure 6. Profile of function ω0e−λ0χ, t = 2π, a = 1.
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Figure 7. Profile of function ω1e−λ1χ, t = 2π, a = 1.

surface. But we still have one free parameter, namely the coefficient C0. Being
proportional to Uw1, it is not defined yet and the proper choice of this coefficient can
ensure that (6.11) or, equivalently, Ω0 = 0 is satisfied. For the main approximation
we have

C0e
λ0ψ

∗/ε
∫ ∞

0

ω0(2π, χ)dχ+ C1e
λ1ψ

∗/ε
∫ ∞

0

ω1(2π, χ)dχ

= F0(a)C0e
λ0ψ

∗/ε + F1(a)C1e
λ1ψ

∗/ε = 0,

from which:

C0 = −C1e
(λ1−λ0)ψ∗/ε F1(a)

F0(a)
.

Now it is possible to find Uw1, which turns out to be now unique and differ from
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Figure 8. Dependence of (λ1/a)(F1/F0) upon a.

the zero value given by Glauert’s solution with no suction by the amount

Uw1 = 2Re

[
−λ1

a
e(λ1−λ0)ψ∗/ε

(
F1(a)

F0(a)

)]
, (6.13)

where (6.5) for C0 and C1 was used. The factor 2 appears after adding the complex
conjugate solution, corresponding to n = −1. This expression depends on the combi-
nation (λ1/a)(F1(a)/F0(a)) which is plotted in figure 8 as a function of a. In addition,
the order of Uw1 is determined by the factor e(λ1−λ0)ψ∗/ε, which is exponentially small
for all a > 0.

It is not clear whether taking into account the higher-order power terms in the
expansion as Re → ∞ will affect (6.13), but at least we have demonstrated that
Uw1 = o(1) without use of the invariant condition of vorticity necessarily changing
sign on a closed contour surrounding the body. This result explains in more detail the
mechanism of the loss of uniqueness of the standard asymptotic solution revealed in
the previous sections. The usual approach to resolving difficulties associated with non-
uniqueness of a certain term of the expansion consists in the analysis of the higher-
order terms. Then the unique solution is obtained from the solvability condition of
the problem for some higher term of the expansion. In the problem considered in
the present paper, the incorrect choice of Uw would lead to discrepancies so small
that they would not manifest themselves in any term of the expansion proportional
to a power of Re. Namely, if Uw is not correct then there is an exponentially small
non-zero vorticity flux in the wake. On the characteristic scale of any term of the
expansion in the boundary layer this flux is zero. However, the characteristic scale of
the vorticity in the mixing layer is also small and there this non-zero flux has already
included manifested itself in the main term of the expansion. This was in fact used to
determine the unique value of Uw1.

Note also that even outside the boundary layer the expansion for the velocity
contains power terms, which we did not calculate but which are much greater than
the exponentially small term corresponding to the vorticity term found in this section.
However, for the vorticity itself the term found is the main term and it happens to
be important.
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7. Conclusion
The results obtained give strong evidence in favour of the following conclusions.
The high-Reynolds-number asymptotics of the steady flow past a quickly rotating

cylinder with suction is unique.
If the flow at infinity is not uniform but has a small uniform shear or, equivalently,

a small constant vorticity then, naturally, the velocity circulation around the cylinder
will depend not only on the rotation velocity but also on this vorticity. It turns out
that to change the circulation by a quantity of order unity it is sufficient to change
the value of the vorticity at infinity by a quantity which is exponentially small as
the Reynolds number tends to infinity. For the particular problem considered in the
present paper the method of matched asymptotic expansion cannot distinguish expo-
nentially small quantities and, as a result, solutions obtained by this method seem to
be not unique.

Sometimes the unique solution can be determined by the requirement that it should
satisfy a certain invariant condition which can be derived from the full Navier–Stokes
equations for arbitrary Reynolds number and which must be valid in the asymptotic
limit. In general explicit analysis of the exponentially small terms is necessary. This
type of analysis was performed for the vorticity distribution outside the boundary
layer.

It is interesting to note an important role of the velocity at infinity in this problem.
For a zero value of the velocity the solution is known to be not unique. In all cases
in this paper where the uniqueness was demonstrated the velocity at infinity was not
zero. Indeed, for suction of order one we used the condition of vorticity necessarily
changing sign on the contour enclosing the body, but this condition itself is valid only
in the case of non-zero velocity at infinity. For suction of order 1/

√
Re and 1/Re the

existence of an outermost closed streamline was explicitly used, which again requires
non-zero velocity at infinity.

The results obtained have certain methodological implications. Often, when a
certain term of an asymptotic expansion seems to be not unique, that means that a
solvability condition of the problem for some higher term must be used to eliminate
the non-uniqueness. This is, for example, the case for the famous Prandtl–Batchelor
theorem, when the use of the invariant condition of zero flux through a closed contour
(as in Batchelor 1956) is not the only way to determine a unique solution. However,
in the problem considered in the present paper this higher-order term turns out to
be exponentially small. In the cases when an invariant condition is not available
for unique determination of the solution, methods of calculating exponentially small
terms have to be developed.

The authors wish to thank the referees of this paper for their useful comments.
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